奧數(shù) > 小學(xué)資源庫 > 教學(xué)論文 > 小學(xué)數(shù)學(xué)教學(xué)論文 > 二年級數(shù)學(xué)教學(xué)論文 > 正文
2016-12-28 16:25:12 下載試卷 標(biāo)簽:小學(xué)數(shù)學(xué)論文 小學(xué)教學(xué)論文
怎樣體現(xiàn)培養(yǎng)學(xué)生思維能力貫穿在小學(xué)數(shù)學(xué)教學(xué)的全過程?是否可以從以下幾方面加以考慮。
(一)培養(yǎng)學(xué)生思維能力要貫穿在小學(xué)階段各個(gè)年級的數(shù)學(xué)教學(xué)中。要明確各年級都擔(dān)負(fù)著培養(yǎng)學(xué)生思維能力的任務(wù)。從一年級一開始就要注意有意識地加以培養(yǎng)。例如,開始認(rèn)識大小、長短、多少,就有初步培養(yǎng)學(xué)生比較能力的問題。開始教學(xué)10以內(nèi)的數(shù)和加、減計(jì)算,就有初步培養(yǎng)學(xué)生抽象、概括能力的問題。開始教學(xué)數(shù)的組成就有初步培養(yǎng)學(xué)生分析、綜合能力的問題。這就需要教師引導(dǎo)學(xué)生通過實(shí)際操作、觀察,逐步進(jìn)行比較、分析、綜合、抽象、概括,形成10以內(nèi)數(shù)的概念,理解加、減法的含義,學(xué)會10以內(nèi)加、減法的計(jì)算方法。如果不注意引導(dǎo)學(xué)生去思考,從一開始就有可能不自覺地把學(xué)生引向死記數(shù)的組成,機(jī)械地背誦加、減法得數(shù)的道路上去。而在一年級養(yǎng)成了死記硬背的習(xí)慣,以后就很難糾正。
(二)培養(yǎng)學(xué)生思維能力要貫穿在每一節(jié)課的各個(gè)環(huán)節(jié)中。不論是開始的復(fù)習(xí),教學(xué)新知識,組織學(xué)生練習(xí),都要注意結(jié)合具體的內(nèi)容有意識地進(jìn)行培養(yǎng)。例如復(fù)習(xí)20以內(nèi)的進(jìn)位加法時(shí),有經(jīng)驗(yàn)的教師給出式題以后,不僅讓學(xué)生說出得數(shù),還要說一說是怎樣想的,特別是當(dāng)學(xué)生出現(xiàn)計(jì)算錯(cuò)誤時(shí),說一說計(jì)算過程有助于加深理解“湊十”的計(jì)算方法,學(xué)會類推,而且有效地消滅錯(cuò)誤。經(jīng)過一段訓(xùn)練后,引導(dǎo)學(xué)生簡縮思維過程,想一想怎樣能很快地算出得數(shù),培養(yǎng)學(xué)生思維的敏捷性和靈活性。在教學(xué)新知識時(shí),不是簡單地告知結(jié)論或計(jì)算法則,而是引導(dǎo)學(xué)生去分析、推理,最后歸納出正確的結(jié)論或計(jì)算法則。例如,教學(xué)兩位數(shù)乘法,關(guān)鍵是通過直觀引導(dǎo)學(xué)生把它分解為用一位數(shù)乘和用整十?dāng)?shù)乘,重點(diǎn)要引導(dǎo)學(xué)生弄清整十?dāng)?shù)乘所得的部分積寫在什么位置,最后概括出用兩位數(shù)乘的步驟。學(xué)生懂得算理,自己從直觀的例子中抽象、概括出計(jì)算方法,不僅印象深刻,同時(shí)發(fā)展了思維能力。在教學(xué)中看到,有的老師也注意發(fā)展學(xué)生思維能力,但不是貫穿在一節(jié)課的始終,而是在一節(jié)課最后出一兩道稍難的題目來作為訓(xùn)練思維的活動,或者專上一節(jié)思維訓(xùn)練課。這種把培養(yǎng)思維能力只局限在某一節(jié)課內(nèi)或者一節(jié)課的某個(gè)環(huán)節(jié)內(nèi),是值得研究的。當(dāng)然,在教學(xué)全過程始終注意培養(yǎng)思維能力的前提下,為了掌握某一特殊內(nèi)容或特殊方法進(jìn)行這種特殊的思維訓(xùn)練是可以的,但是不能以此來代替教學(xué)全過程發(fā)展思維的任務(wù)。
(三)培養(yǎng)思維能力要貫穿在各部分內(nèi)容的教學(xué)中。這就是說,在教學(xué)數(shù)學(xué)概念、計(jì)算法則、解答應(yīng)用題或操作技能(如測量、畫圖等)時(shí),都要注意培養(yǎng)思維能力。任何一個(gè)數(shù)學(xué)概念,都是對客觀事物的數(shù)量關(guān)系或空間形式進(jìn)行抽象、概括的結(jié)果。因此教學(xué)每一個(gè)概念時(shí),要注意通過多種實(shí)物或事例引導(dǎo)學(xué)生分析、比較、找出它們的共同點(diǎn),揭示其本質(zhì)特征,做出正確的判斷,從而形成正確的概念。例如,教學(xué)長方形概念時(shí),不宜直接畫一個(gè)長方形,告訴學(xué)生這就叫做長方形。而應(yīng)先讓學(xué)生觀察具有長方形的各種實(shí)物,引導(dǎo)學(xué)生找出它們的邊和角各有什么共同特點(diǎn),然后抽象出圖形,并對長方形的特征作出概括。教學(xué)計(jì)算法則和規(guī)律性知識更要注意培養(yǎng)學(xué)生判斷、推理能力。例如,教學(xué)加法結(jié)合律,不宜簡單地舉一個(gè)例子,就作出結(jié)論。最好舉兩三個(gè)例子,每舉一個(gè)例子,引導(dǎo)學(xué)生作出個(gè)別判斷〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結(jié)果相同〕。然后引導(dǎo)學(xué)生對幾個(gè)例子進(jìn)行分析、比較,找出它們的共同點(diǎn),即等號左端都是先把前兩個(gè)數(shù)相加,再同第三個(gè)數(shù)相加,而等號右端都是先把后兩個(gè)數(shù)相加,再同第一個(gè)數(shù)相加,結(jié)果不變。最后作出一般的結(jié)論。這樣不僅使學(xué)生對加法結(jié)合律理解得更清楚,而且學(xué)到不完全歸納推理的方法。然后再把得到的一般結(jié)論應(yīng)用到具體的計(jì)算(如57+28+12)中去并能說出根據(jù)什么可以使計(jì)算簡便。這樣又學(xué)到演繹的推理方法至于解應(yīng)用題引導(dǎo)學(xué)生分析數(shù)量關(guān)系,這里不再贅述。
三設(shè)計(jì)好練習(xí)題對于培養(yǎng)學(xué)生思維能力起著重要的促進(jìn)作用
培養(yǎng)學(xué)生的思維能力同學(xué)習(xí)計(jì)算方法、掌握解題方法一樣,也必須通過練習(xí)。而且思維與解題過程是密切聯(lián)系著的。培養(yǎng)思維能力的最有效辦法是通過解題的練習(xí)來實(shí)現(xiàn)。因此設(shè)計(jì)好練習(xí)題就成為能否促進(jìn)學(xué)生思維能力發(fā)展的重要一環(huán)。一般地說,課本中都安排了一定數(shù)量的有助于發(fā)展學(xué)生思維能力的練習(xí)題。但是不一定都能滿足教學(xué)的需要,而且由于班級的情況不同,課本中的練習(xí)題也很難做到完全適應(yīng)各種情況的需要。因此教學(xué)時(shí)往往要根據(jù)具體情況做一些調(diào)整或補(bǔ)充。為此提出以下幾點(diǎn)建議供參考。
(一)設(shè)計(jì)練習(xí)題要有針對性,要根據(jù)培養(yǎng)目標(biāo)來進(jìn)行設(shè)計(jì)。例如,為了了解學(xué)生對數(shù)學(xué)概念是否清楚,同時(shí)也為了培養(yǎng)學(xué)生運(yùn)用概念進(jìn)行判斷的能力,可以出一些判斷對錯(cuò)或選擇正確答案的練習(xí)題。舉個(gè)具體例子:“所有的質(zhì)數(shù)都是奇數(shù)。()”如要作出正確判斷,學(xué)生就要分析偶數(shù)里面有沒有質(zhì)數(shù)。而要弄清這一點(diǎn),要明確什么叫做偶數(shù),什么叫做質(zhì)數(shù),然后應(yīng)用這兩個(gè)概念的定義去分析能被2整除的數(shù)里面有沒有一個(gè)數(shù),它的約數(shù)只1和它自身。想到了2是偶數(shù)又是質(zhì)數(shù),這樣就可以斷定上面的判斷是錯(cuò)誤的。
歡迎掃描二維碼
關(guān)注奧數(shù)網(wǎng)微信
ID:aoshu_2003
歡迎掃描二維碼
關(guān)注中考網(wǎng)微信
ID:zhongkao_com