奧數 > 小學資源庫 > 教案 > 小學數學教案 > 四年級數學下冊教案 > 正文
2009-05-11 13:19:47
教學內容:
教科書例3、例4、例5及“做一做”,練習十三第3—9題。
(一)知識教學點
1.使學生理解并掌握乘法結合律。
2.應用乘法交換律和結合律進行簡算。
(二)能力調練點
培養學生的邏輯思維能力,解決實際問題。
(三)德育滲遺點
認識知識間的相互關系。
(四)羹育滲遺點
通過學習感悟數學知識內在聯系的邏輯之美,·提高審美意識,
引導學生運用已有經驗,進行知識遷移,使學生由感性上升到理性,抽象概
念,掌握知識。
1.教學重點:理解乘法的結合律的意義及運用。
2.教學難點:乘法結合律的運用。
投影儀、投影片、小黑板(轉板)。
(一)鐳蟄孕伏
1.什么叫乘法的交換律?舉例說明。
2.在()里填上適當的數,并說明根據什么運算定律填的。(投影)
24×5=()×(
)()×72二72×()()×()二()X()
3.以上我們對乘法交換律及其應用進行了復習,同學們掌握得很好
課我們再來學習乘法結合律。
板書課題:乘法結合律
(早)探究新知
1.教學例3:
出示例3:
(2)引導學生分組試算,發現什么?
(3)匯報:
使學生明確:左邊三個數相乘的積和右邊三個數相乘的積相等。
(4)同座互相試算,自己寫數,看一看結果是否都是這樣?
(5)反饋練習:完成下面幾組算式并觀察下面每組的兩個算式,你發現了什
么規律?
(15×4)×100=15×(4×10)
(125×80)×50=125×(80×5)
(7×8)×5=7×(8×5)
(12×25)×4=12×(4×25)
使學生明確:三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先
把后兩個數相乘,再同第一個數相乘,它們的積不變。
(引導學生初步歸納乘法結合律,多次體驗,探索規律,形成技能。)
(6)
用字母表示乘法結合律。
如果用字母o、b、c分別表示這三個數,那么乘法結合律該怎樣表示呢?啟
發學生回答,教師板書:(o×6)×c;教師提示學生注意這里的o、6、c表示的是大于0或等于0的整數。
并指導閱讀教科書。
(7)練習:教材第61頁上面的“做一做”(學生填書),訂正并說明根據。
2.教學例4:+、
我們知道應用加法的交換律、結合律可使一些計算簡便。同樣我們應用乘
法交換律和結合律也可以進行簡便運算。
板書:簡便運算
出示例4:計算43×25×4
教師提問:怎樣計算比較簡便?學生交流后試算
法。
3.教學例5:
出示例5,計算25
×43×4
并指名板演,講述計算方法
引導學生討論,這道題怎樣計算比較簡便?同桌討論如何計算,最后把答
案寫出來,指名板演,集體訂正。訂正時由學生講,由25×43×4到43×25×4
這一步,根據乘法交換律。由43×25×4到43×(25×4)的根據是乘法結合律。
教師指出:分析或想的過程可以省略。
4.比較例4和例5:
觀察比較例4和例5時,在應用運算定律方面有什么不同?交給學生討
論,引導學生明確:計算例4時,沒有調換因數的位置,只應用了乘法的結合律,
使計算簡便;例5應用了交換律調換了因數的位置,然后再應用乘法結合律,使
計算簡便。
5.同學們想一想,過去學過的哪些知識應用了乘法的結合律?啟發學生說
出5×16可簡便計算,以及算法。
6.練習:教材第61頁下方的“做一做”。(學生口述解答)
教師:以上我們學的是應用定律如何進行簡算,也就是在幾個數相乘的條
件下,如果其中有兩個數相乘得整十、整百……的數,就可應用乘法交換律和結
合律,使計算比較簡便。
(三)鞏固發晨
1.填空:
(1)乘法結合律用字母公式表示是(
(2)教科書第62頁第3題。
2.用簡便方法計算練習第十三4題。
3.練習十三第5題,投影出示。(口答)
4.練習十四第6題,分組討論。
5.練習十四第8題;投影出示。學生獨立填寫,訂正時說一說是怎樣想的。
(四)全課小結(略)
練習十三第7、9題。
乘法結合律和簡便算法
(5×4)×2二5×(4×2)
三個數相乘,先把前兩個數相乘,再同第三個數相乘,
或者先把后兩個數相乘,再同第一個數相乘,它們的
積不變,這叫做乘法的結合律。
例4計算43×25
×4
例5計算
43×100