雞兔同籠問題例題透析4
今年是1998年,父母年齡(整數)和是78歲,兄弟的年齡和是17歲.四年后(2002年)父的年齡是弟的年齡的4倍,母的年齡是兄的年齡的3倍.那么當父的年齡是兄的年齡的3倍時,是公元哪一年?
解:4年后,兩人年齡和都要加8.此時兄弟年齡之和是17+8=25,父母年齡之和是78+8=86.我們可以把兄的年齡看作“雞”頭數,弟的年齡看作“兔”頭數.25是“總頭數”.86是“總腳數”.根據公式,兄的年齡是
。25×4-86)÷(4-3)=14(歲).
1998年,兄年齡是
14-4=10(歲).
父年齡是
(25-14)×4-4=40(歲).
因此,當父的年齡是兄的年齡的3倍時,兄的年齡是
(40-10)÷(3-1)=15(歲).
這是2003年.
答:公元2003年時,父年齡是兄年齡的3倍.
蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀.現在這三種小蟲共18只,有118條腿和20對翅膀.每種小蟲各幾只?
解:因為蜻蜓和蟬都有6條腿,所以從腿的數目來考慮,可以把小蟲分成“8條腿”與“6條腿”兩種.利用公式就可以算出8條腿的
蜘蛛數=(118-6×18)÷(8-6)
=5(只).
因此就知道6條腿的小蟲共
18-5=13(只).
也就是蜻蜓和蟬共有13只,它們共有20對翅膀.再利用一次公式
蟬數=(13×2-20)÷(2-1)=6(只).
因此蜻蜓數是13-6=7(只).
答:有5只蜘蛛,7只蜻蜓,6只蟬.
某次數學考試考五道題,全班52人參加,共做對181道題,已知每人至少做對1道題,做對1道的有7人,5道全對的有6人,做對2道和3道的人數一樣多,那么做對4道的人數有多少人?
解:對2道、3道、4道題的人共有
52-7-6=39(人).
他們共做對
181-1×7-5×6=144(道).
由于對2道和3道題的人數一樣多,我們就可以把他們看作是對2.5道題的人((2+3)÷2=2.5).這樣
兔腳數=4,雞腳數=2.5,
總腳數=144,總頭數=39.
對4道題的有
。144-2.5×39)÷(4-1.5)=31(人).
答:做對4道題的有31人.